A Trajectory Algorithm Based on the Gradient Method I. The Search on the Quasioptimal Trajectories

E. G. STURUA and S. K. ZAVRIEV
Moscow State University, Faculty of Computational, Mathematics \& Cybernetics, SU-119899, U.S.S.R.

(Received: 22 April 1991; accepted: 16 May 1991)

Abstract

The global optimization problem is considered under the assumption that the objective function is convex with respect to some variables. A finite subgradient algorithm for the search of an ε-optimal solution is proposed. Results of numerical experiments are presented.

Key words. Projected subgradient method, global optimization, trajectory algorithms.

1. Introduction

Consider the global optimization problem

$$
\begin{equation*}
F(x) \rightarrow \min _{x \in X}, \tag{1}
\end{equation*}
$$

where the objective function $F(\cdot)$ is Lipschitz continuous with the constant $L>0$ on $X, X \subset E_{k}$ is convex and compact, E_{k} is a k-dimensional Euclidean space.
Denote

$$
\begin{aligned}
& X_{0}^{\varepsilon}=\left\{x \in X \mid F(x) \leqslant \min _{x^{\prime} \in X} F\left(x^{\prime}\right)+\varepsilon\right\}, \varepsilon \geqslant 0, \\
& X_{0}^{0}=X_{0}, \\
& X_{0}^{\varepsilon} \text { is the set of } \varepsilon \text {-optimal solutions of the problem (1), } \\
& X_{0} \text { is the optimal set. }
\end{aligned}
$$

To construct a trajectory algorithm (see [1]) for the global ε-optimization we need
(i) a class $\mathfrak{E}^{\mathfrak{E}}$ of curves $C, C \subset X$, satisfying

$$
C \cap X_{0}^{\varepsilon} \neq \emptyset \quad \forall C \in \mathscr{C}
$$

where curve $C \subset E_{k}$ may be considered as some trajectory $C=\{c(t), t \in T\}$;
(ii) the very algorithm searching a global extremum on a curve (trajectory) $C \in \mathfrak{E}$.

Usually the class \mathbb{S}^{5} of trajectories is defined by ordinary differential equations

$$
\begin{align*}
& \dot{x}=G(x), \quad x(0)=x_{0}, \tag{2}\\
& \mathfrak{G}=\left\{x(t), \quad t \in[0, \infty] \mid \dot{x}=G(x), \quad x(0) \in X^{1}\right\},
\end{align*}
$$

and as searching algorithms finite-difference analogues of (2) are considered (see [1-6]). In the present paper we consider a different approach to the definition of \mathfrak{C}. Thus, we have to construct special algorithms searching the global optimum on trajectories $C \in \mathbb{C}$.

ASSUMPTION 1.1. Let in problem (1)

$$
\begin{equation*}
X=Y \times Z \tag{3}
\end{equation*}
$$

where $Y \subset E_{k_{1}}, Z \subset E_{k_{2}}$ are compact, $k_{1}+k_{2}=k, Y$ is convex, Z is simply connected.

Set

$$
\begin{aligned}
& x=(y, z) \in Y \times Z=X, \\
& F(x)=F(y, z), \\
& Y_{0}^{\beta}(z)=\left\{y \in Y \mid F(y, z) \leqslant \min _{y^{\prime} \in Y} F\left(y^{\prime}, z\right)+\beta\right\}, \beta \geqslant 0, \\
& Y_{0}^{\beta}(z)=Y_{0}(z), z \in Z .
\end{aligned}
$$

DEFINITION 1.2. The trajectory $\{y(z), z \in Z\}$ is said to be a quasioptimal trajectory of problem (1) (in respect to the decomposition (3)) if

$$
y(z) \in Y_{0}(z) \quad \forall z \in Z
$$

DEFINITION 1.3. The finite set $Z^{*}=\left\{z^{1}, \ldots, z^{N}\right\}$ is called a γ-chain on Z, if Z^{*} has the following properties:

$$
\begin{aligned}
& z^{i} \in Z, \quad i=1, \ldots, N \\
& \min _{1 \leqslant i \leqslant N}\left\|z \quad z^{i}\right\|<\gamma \quad \forall z \in Z \\
& \left\|z^{i}-z^{i+1}\right\|<2 \gamma, \quad i=1, \ldots, N-1
\end{aligned}
$$

DEFINITION 1.4. The finite trajectory $\left\{y(z), z \in Z^{*}\right\}, Z^{*}=\left\{z^{1}, \ldots\right.$, $\left.z^{N}\right\} \supset Z$, is said to be (α, β, γ)-quasioptimal trajectory of problem (1), $\alpha, \beta \geqslant 0$, $\gamma>0$, if

$$
Z^{*} \text { is a } \gamma \text {-chain on } Z
$$

and

$$
\begin{aligned}
& \rho\left(y\left(z^{i}\right), Y_{0}^{\beta}\left(z^{i}\right)\right)^{2} \leqslant \alpha, \quad i=1, \ldots, N \\
& \rho(x, A)=\inf \|x-y\|, x \in E, A \subset E
\end{aligned}
$$

LEMMA 1.5. (1) Every quasioptimal trajectory $C=\left\{y(z), z \in Z^{*}\right\}$ of problem (1) has the property that

$$
C \cap X_{0} \neq \emptyset .
$$

(2) Every (α, β, γ)-quasioptimal trajectory $C=\left\{y(z), z \in Z^{*}\right\}$ of problem (1) has the property that

$$
C \cap X_{0}^{\varepsilon} \neq \emptyset
$$

where $\varepsilon=L \alpha^{1 / 2}+\beta+L \gamma$.
Proof. Let us fix arbitrary $\varepsilon>0$ and $\alpha, \beta \geqslant 0, \gamma>0$, satisfying the estimation

$$
L \alpha^{1 / 2}+\beta+L \gamma \leqslant \varepsilon
$$

Let $C=\left(y(z), z \in Z^{*}\right)$ be an arbitrary ($\left.\alpha, \beta, \gamma\right)$-quasioptimal trajectory of (1) and $x_{0}=\left(y_{0}, z_{0}\right)$ be an optimal solution of (1),

$$
x_{0}=\left(y_{0}, z_{0}\right) \in X_{0}
$$

By Definition 1.4 the finite set $Z^{*} \subset Z$ is a γ-chain on Z, thus there exists $z_{0}^{*} \in Z^{*}$ such that

$$
\left\|z_{0}^{*}-z_{0}\right\|<\gamma
$$

Set

$$
\varphi(z)=\min _{y \in Y} F(x, y), z \in Z
$$

It is easily seen that $\varphi(\cdot)$ is Lipschitz continuous with the constant $L>0$ on Z and

$$
\varphi\left(z_{0}\right)=\min _{x \in X} F(x)
$$

Hence, we have

$$
\varphi\left(z_{0}^{*}\right) \leqslant \varphi\left(z_{0}\right)+L\left\|z_{0}^{*}-z_{0}\right\|<\min _{x \in x} F(x)+L \gamma .
$$

By Definition 1.4 there exists $y_{0}\left(z_{0}^{*}\right) \in Y_{0}^{\beta}\left(z_{0}^{*}\right)$ such that

$$
\left\|y_{0}\left(z_{0}^{*}\right)-y\left(z_{0}^{*}\right)\right\| \leqslant \alpha^{1 / 2}
$$

Applying the definition of $Y_{0}^{\beta}\left(z_{0}^{*}\right)$, we obtain

$$
\begin{aligned}
F\left(y\left(z_{0}^{*}\right), z_{0}^{*}\right) & \leqslant F\left(y_{0}\left(z_{0}^{*}\right), z_{0}^{*}\right)+L\left\|y\left(z_{0}^{*}\right)-y_{0}\left(z_{0}^{*}\right)\right\| \\
& \leqslant \varphi\left(z_{0}^{*}\right)+\beta+L \alpha^{1 / 2} \leqslant \min _{x \in X} F(x)+L \gamma+\beta+L \alpha^{1 / 2} \\
& \leqslant \min _{x \in X}(x)+\varepsilon
\end{aligned}
$$

Therefore, we get

$$
\left(y\left(z_{0}^{*}\right), x_{0}^{*}\right) \in X_{0}^{\varepsilon}
$$

and

$$
C \cap X_{0}^{\varepsilon} \neq \emptyset
$$

In Section 2 the finite subgradient algorithm for the convex parametric programming problem is considered. The infinite algorithms of this type were studied
in $[7,8]$. In Section 3 the subgradient parametric programming algorithm is applied to search an ε-optimal solution of the problem (1) on an (α, β, γ)quasioptimal trajectory. Some results of numerical experiments are presented in Sections 4, 5.

2. The Finite Subgradient Algorithm for the Parametric Optimization

Consider the parametric programming problem: to search $x(t) \in X_{0}(t)$,

$$
\begin{equation*}
X_{0}(t)=\left\{x \in X \mid \Phi(x, t)=\min _{x^{\prime} \in X} \Phi\left(x^{\prime}, t\right)\right\}, t \in T \tag{4}
\end{equation*}
$$

where the objective function $\Phi(\cdot, t)$ is continuous on $X \times T, X \subset E_{k}, T \subset E_{\mathrm{S}}$ are compact, X is convex, T is simply connected, $\operatorname{diam} X=\sup _{x^{\prime}, x^{\prime \prime} \in X}\left\|x^{\prime}-x^{\prime \prime}\right\|=$ D.

Set

$$
X_{0}^{\beta}(t)=\left\{x \in X \mid \Phi(x, t) \leqslant \min _{x^{\prime} \in X} \Phi\left(x^{\prime}, t\right)+\beta\right\}, t \in T, \beta \geqslant 0
$$

DEFINITION 2.2. The discrete trajectory $\left\{x(t), t \in T^{*}\right\}, T^{*}=\left\{t^{1}, \ldots, t^{N}\right\}$, is called an (α, β, γ)-optimal solution of (4) if

$$
T^{*} \text { is a } \gamma \text {-chain on } T
$$

and

$$
\rho\left(x\left(t^{i}\right), X_{0}^{\beta}\left(t^{i}\right)\right)^{2} \leqslant \alpha, \quad i=1, \ldots, N
$$

ASSUMPTION 2.3. Let in (4) the objective function $\Phi(\cdot, t)$ be convex on X for every $t \in T, L>0$ and

$$
\left|\Phi\left(x, t^{\prime}\right)-\Phi\left(x, t^{\prime \prime}\right)\right| \leqslant L\left\|t^{\prime}-t^{\prime \prime}\right\| \quad \forall t^{\prime}, t^{\prime \prime} \in T
$$

Let

$$
\partial_{x}^{(\delta)} \Phi(x, t)
$$

denote the set of all δ-subgradients of the convex function $\Phi(\cdot, t)$ in the point x (see [9]), $\delta \geqslant 0$.

Consider the following algorithm:

$$
\begin{equation*}
x^{n+1}=\operatorname{pr}_{x}\left(x^{n}-a \xi^{n}\right), \quad n=1, \ldots, N-1 \tag{5}
\end{equation*}
$$

where $\mathrm{pr}_{X}(\cdot)$ is the projector on X,

$$
\xi^{n} \in \partial_{x}^{(\delta)} \Phi\left(x^{n}, t^{n}\right), \quad n=1, \ldots, N-1
$$

$T^{*}=\left\{t^{1}, \ldots, t^{N}\right\}$ is a γ-chain on T,
$a, \delta, \gamma-$ are parameters, $a, \gamma>0, \delta \geqslant 0$;
$x^{1} \in X$ is an initial point.

Let us fix arbitrary $\alpha_{0}, \beta_{0}, \gamma_{0}>0$. Our aim is to obtain some $\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)$ optimal solution of (4).

THEOREM 2.4. Let Assumption 2.3 be fulfilled and in (5)

$$
\left\|\xi^{n}\right\| \leqslant K, \quad n=1, \ldots, N-1
$$

Suppose that the parameters a, δ, γ of algorithm (5) satisfy

$$
\left\{\begin{array}{l}
\theta_{0}+2 a \delta+a^{2} K^{2}+\frac{8 L D^{2}}{\beta_{0}} \gamma+16 \frac{L^{2} D^{2}}{\beta_{0}^{2}} \gamma^{2} \leqslant \alpha_{0} \tag{6}\\
2 a \delta+a^{2} K^{2}+\frac{8 L D^{2}}{\beta_{0}} \gamma+16 \frac{L^{2} D^{2}}{\beta_{0}^{2}} \gamma^{2} \leqslant \frac{2 a \beta_{0}}{D} \theta_{0}^{1 / 2} \\
0<\gamma \leqslant \gamma_{0}, \delta \geqslant 0, a>0
\end{array}\right.
$$

for some $\theta_{0}>0$.
Suppose that the initial point $x^{1} \in X$ satisfies

$$
\rho\left(x^{1}, X_{0}^{\beta_{0}}\left(t^{1}\right)\right)^{2} \leqslant \alpha_{0}
$$

Then every trajectory $\left\{x\left(t^{n}\right)=x^{n}, n=1, \ldots, N\right\}$ of the algorithm (5) is an (α^{0}, β_{0}, γ_{0})-optimal solution of (4), i.e.,

$$
\rho\left(x^{n}, X_{0}^{\beta_{0}}\left(t^{n}\right)\right)^{2} \leqslant \alpha_{0}, \quad n=1, \ldots, N .
$$

REMARK 2.5. It is easily seen that for any $\alpha_{0}, \beta_{0}, \gamma_{0}>0$ there exist a, δ, γ satisfying (6).

The proof is in the Appendix.

3. The Global Optimization Algorithm

Consider the global optimization problem (1).

ASSUMPTION 3.1. Let the objective function $F(\cdot, z)$ be convex on Y for every $z \in Z$.

The algorithm searching on an $\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)$-quasioptimal trajectory is as follows:

$$
\begin{align*}
& y^{n+1}=\operatorname{pr}_{Y}\left(y^{n}-a \xi^{n}\right), \\
& x^{n+1}=\left(y^{n+1}, z^{n+1}\right), \\
& \bar{x}^{n+1}=\left\{\begin{array}{l}
\bar{x}^{n}, \\
\text { if } F\left(\bar{x}^{n}\right) \leqslant F\left(x^{n+1}\right) \\
x^{n+1}, \\
\text { in opposite case } ;
\end{array}\right. \tag{7}\\
& n=1, \ldots, N-1, \\
& \text { where }\left\{z^{1}, \ldots, z^{N}\right\} \text { is a } \gamma \text {-chain on } Z
\end{align*}
$$

$\xi^{n} \in \partial F_{y}^{(\delta)}\left(y^{n}, z^{n}\right), \quad n=1, \ldots, N-1$,
parameters $a, \gamma>0, \delta \geqslant 0$;
$y^{1} \in Y$ is an initial point.
Let us fix an arbitrary $\varepsilon>0$. Applying Theorem 2.4 and Lemma 1.5, we obtain THEOREM 3.2. Let Assumptions 1.1, 3.1 be fulfilled and in (7)

$$
\left\|\xi^{n}\right\| \leqslant K, \quad n=1, \ldots, N-1
$$

Suppose that parameters a, δ, γ, of the algorithm (7) satisfy

$$
\begin{aligned}
& \theta_{0}+2 a \delta+a^{2} K^{2}+\frac{8 L D^{2}}{\beta_{0}} \gamma+16 \frac{L^{2} D^{2}}{\beta_{0}^{2}} \gamma^{2} \leqslant \alpha_{0} \\
& 2 a \delta+a^{2} K^{2}+\frac{8 L D^{2}}{\beta_{0}} \gamma+16 \frac{L^{2} D^{2}}{\beta_{0}^{2}} \gamma^{2} \leqslant \frac{2 a \beta_{0}}{D} \theta_{0}^{1 / 2} \\
& L \alpha_{0}^{1 / 2}+\beta_{0}+L \gamma_{0} \leqslant \varepsilon \\
& 0<\gamma \leqslant \gamma_{0}, a>0, \delta \geqslant 0, \theta_{0}>0 \\
& D=\operatorname{diam} Y
\end{aligned}
$$

for some $\alpha_{0}, \beta_{0}, \gamma_{0}, \theta_{0}>0$, and the initial point y^{1} satisfies

$$
\rho\left(y^{1}, Y_{0}^{\beta_{0}}\left(z^{1}\right)\right)^{2}<\alpha_{0}
$$

(it is obvious that $y^{1} \in Y_{0}^{\varepsilon}\left(z^{1}\right)$).
Then every trajectory of the algorithm (7) has the following properties:
(i) $\left\{y^{n}\left(z^{n}\right)=y^{n}, n=1, \ldots, N\right\}$ is an ($\alpha_{0}, \beta_{0}, \gamma_{0}$)-quasioptimal trajectory of (1);
(ii) $\bar{x}^{N} \in X_{0}^{\varepsilon}$.

4. Numerical Examples

Conditions on parameters of algorithm (7) are rather restricting. If we set, for example, $D=10, L=100$ and $\varepsilon=0.05$, then to satisfy the conditions we have to take very small values of a, δ and γ (for instance, $\gamma<10^{-6}$). But analysing the proof of Theorem 2.4 it is easy to see that conditions (6) may be weakened and essentially greater values of parameters a, δ, γ may be used in algorithm (7). Numerical experiments show such abilities.

EXAMPLE 4.1. Let $F(\cdot)$ in (1) be defined by
$F\left(x_{1}, x_{2}\right)=x_{1}^{4}+4 x_{1}^{3}+4 x_{1}^{2}+\left(x_{2}-2 \sin \left(\pi / 2 x_{1}\right)\right)^{2} \quad($ modified \quad Treccani function [11]),

$$
\begin{aligned}
& X=\left\{x=\left(x_{1}, x_{2}\right) \mid-3 \leqslant x_{1} \leqslant 1,-1 \leqslant x_{2} \leqslant 1\right\}, \\
& X_{0}=\{(-2,0),(0,0)\}, \\
& F^{*}=\min _{x \in X} F(x)=0 .
\end{aligned}
$$

Set

$$
\begin{aligned}
& y=x_{2}, z=x_{1}, \\
& Y=[-1,1], Z=[-3,1]
\end{aligned}
$$

(it is easily seen that diam $Y=D=2, L \simeq 100$).
Set

$$
\begin{aligned}
& z^{1}=-3, z^{n+1}=z^{n}+\gamma, n=1, \ldots, N, \\
& x^{1}=(-3.0,-0.95), \\
& F\left(x^{1}\right)=F\left(y^{1}, z^{1}\right) \leqslant \min _{y \in Y} F\left(y, z^{1}\right)+0.05, \\
& \delta=0.0 .
\end{aligned}
$$

Applying the algorithm (7), we get the results presented in Table I (see Figure 1).

EXAMPLE 4.2. Let $F(\cdot)$ in (1) be defined by

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)=x_{2}^{2}-x_{1} x_{2}+2 x_{1}^{2}-1.05 x_{1}^{4}+\frac{1}{6} x_{1}^{6} \quad \text { ("three-hump camel-back } \\
& \quad \text { function"' } 2]) \\
& X=\left\{x=\left(x_{1}, x_{2}\right) \mid-2.5 \leqslant x_{1} \leqslant 2.5,-1 \leqslant x_{2} \leqslant 1\right\} \\
& X_{0}=\{(0,0)\}, F^{*}=0
\end{aligned}
$$

Set

$$
\begin{aligned}
& y=x_{2}, z=x_{1}, \\
& Y=[-1,1], Z=[-2.5,2.5],
\end{aligned}
$$

it is easily seen that diam $Y=D=2, L \simeq 10$.

Table I

γ	a	N	\bar{x}^{N}	$F\left(\bar{x}^{N}\right)$
$8 \cdot 10^{-2}$	0.5	26	$(-0.039999,-0.125580)$	-0.006146
$4 \cdot 10^{-2}$	0.5	51	$\left(-4.768371 \cdot 10^{-7},-1.490116 \cdot 10^{-6}\right)$	$9.095568 \cdot 10^{-13}$
10^{-2}	0.5	201	$\left(-2.000000,3.173947 \cdot 10^{-6}\right)$	$3.637991 \cdot 10^{-12}$
10^{-3}	0.5	2001	$\left(2.799136 \cdot 10^{-5}, 8.793734 \cdot 10^{-5}\right)$	$3.134153 \cdot 10^{-9}$
10^{-4}	0.1	20001	$(2.000034,0.002620)$	$6.323266 \cdot 10^{-6}$
10^{-6}	0.05	2000001	$\left(-6.165428 \cdot 10^{-6},-0.000584\right)$	$3.199272 \cdot 10^{-7}$

Fig. 1.
Set

$$
\begin{aligned}
& z^{1}=-3, z^{n+1}=z^{n}+\gamma, \quad n=1, \ldots, N \\
& x^{1}=(-2.5,-0.95) \\
& F\left(x^{1}\right)=F\left(y^{1}, z^{1}\right) \leqslant \min _{y \in Y} F\left(y, z^{1}\right)+0.05 \\
& \delta=0.0 .
\end{aligned}
$$

Applying the algorithm (7), we get the results presented in Table II (see Figure 2).
Table II

γ	a	N	\bar{x}^{N}	$F\left(\bar{x}^{N}\right)$
$8 \cdot 10^{-2}$	0.5	32	$\left(-1.817941 \cdot 10^{-6},-9.089708 \cdot 10^{-7}\right)$	$5.783595 \cdot 10^{-12}$
$4 \cdot 10^{-2}$	0.5	63	$\left(2.682209 \cdot 10^{-7}, 1.341104 \cdot 10^{-7}\right)$	$1.258992 \cdot 10^{-13}$
10^{-2}	0.5	251	$\left(-1.817941 \cdot 10^{-6},-9.089708 \cdot 10^{-7}\right)$	$5.783595 \cdot 10^{-12}$
10^{-3}	0.5	2501	$\left(4.626344 \cdot 10^{-6}, 2.313172 \cdot 10^{-6}\right)$	$3.745536 \cdot 10^{-11}$
10^{-4}	0.1	25001	$\left(-9.912793 \cdot 10^{-6},-0.000404\right)$	$1.601719 \cdot 10^{-7}$
10^{-6}	0.05	2500001	$\left(-6.165428 \cdot 10^{-6},-9.308272 \cdot 10^{-5}\right)$	$8.166523 \cdot 10^{-9}$

Fig. 2.

5. Conclusion

The algorithm (7) may be applied not only in problems (1) with the special "partly convex" structure. It is possible to use this algorithm, starting with all local optima $\left\{y_{1}^{1}, \ldots, y_{s}{ }^{1}\right\}$ of the problem

$$
F\left(y, z^{1}\right) \rightarrow \min _{y \in Y}
$$

when Assumption 3.1 is not fulfilled. In this situation we obtain S trajectories

$$
\left\{x_{j}^{n}=\left(y_{j}^{n}, z^{n}\right), \bar{x}_{j}^{n}, n=1, \ldots, N\right\}, \quad j=1, \ldots, S,
$$

and set

$$
\bar{x}^{N}=\underset{1 \leqslant i \leqslant s}{\operatorname{argmin}} F\left(\bar{x}_{i}^{N}\right) .
$$

EXAMPLE 5.1. Let $F(\cdot)$ in (1) be defined by

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)=4 x_{2}^{2}-2.1 x_{2}^{4}+\frac{1}{3} x_{2}^{6}-x_{1} x_{2}-4 x_{1}^{2}+4 x_{1}^{4} \quad \text { ("six-hump } \\
& \quad \text { camel-back function" } 2]), \\
& X=\left\{x=\left(x_{1}, x_{2}\right) \mid-1.5 \leqslant x_{1} \leqslant 1.5,-2 \leqslant x_{2} \leqslant 2\right\} \\
& X_{0}=\left\{x_{0}\right\}, x_{0} \simeq(-0.7,0.1), F^{*} \simeq-1.031628 .
\end{aligned}
$$

Set

Fig. 3.

$$
\begin{aligned}
& y=x_{2}, z=x_{1}, \\
& Y=[-2,2], Z=[-1.5,1.5] . \\
& z^{1}=-1.5, \\
& y_{1}^{1}=0.2, y_{2}^{1}=1.8, y_{3}^{1}=-1.5, S=3
\end{aligned}
$$

and

$$
x^{1}=(-1.5,0.2), \delta=0.0 .
$$

Applying the algorithm (7) with the starting points y_{1}^{1}, y_{2}^{1} and y_{3}^{1}, we get the results, presented in Table III (see Figure 3).

Table III

γ	a	N	\bar{x}^{N}	$F\left(\bar{x}^{N}\right)$
10^{-1}	0.2	31	$(-0.699999,0.081739)$	-1.030185
$5 \cdot \mathbf{1 0 ^ { - 2 }}$	0.2	61	$(-0.699999,0.083760)$	-1.030272
10^{-2}	0.2	301	$(-0.710000,0.090421)$	-1.031568

6. Appendix

In this section we supply a proof to Theorem 2.4 (see [10]).
Set

$$
\varphi(t)=\min _{x \in X} \Phi(x, t), t \in T .
$$

LEMMA 6.1. The function $\varphi(\cdot)$ is Lipschitz continuous with constant $L>0$ on T.

LEMMA 6.2. Let $f(\cdot)$ be convex on $X \subset E_{k}, X$ is convex and compact.
Then for every $\beta \geqslant 0$ and $x \in X$

$$
\min \left(0, \min _{x^{\prime} \in X} f\left(x^{\prime}\right)-f(x)+\beta\right) \leqslant-\frac{\beta}{D} \rho\left(x, X_{\beta}\right)=-\frac{\beta}{D}\left\|x-\operatorname{pr}_{X_{\beta}}(x)\right\|,
$$

where $X_{\beta}=\left\{x \in X \mid f(x) \leqslant \min _{x^{\prime} \in X} f\left(x^{\prime}\right)+\beta\right\}$.
Set

$$
h(A, B)=\max \left(\max _{x \in A} \rho(x, B), \max _{x \in B} \rho(x, A)\right),
$$

where $A, B \subset X$.
COROLLARY 6.3. For every $\beta>0, t^{\prime}, t^{\prime \prime} \in T$

$$
\rho\left(X_{0}^{\beta}\left(t^{\prime}\right), X_{o}^{\beta}\left(t^{\prime \prime}\right)\right) \leqslant \frac{2 L D}{\beta}\left\|t^{\prime}-t^{\prime \prime}\right\| .
$$

Proof. Fix arbitrary $t^{\prime}, t^{\prime \prime} \in T, \beta>0$ and

$$
\begin{equation*}
x \in X_{0}^{\beta}\left(t^{\prime}\right) \tag{8}
\end{equation*}
$$

If $x \notin X_{0}^{\beta}\left(t^{\prime \prime}\right)$, then, applying Lemma 6.2 , we get

$$
\begin{aligned}
& -\Phi\left(\dot{x}, t^{\prime \prime}\right)-L\left\|t^{\prime}-t^{\prime \prime}\right\|+\varphi\left(t^{\prime \prime}\right)+\beta \\
& \quad \leqslant-\Phi\left(x, t^{\prime \prime}\right)+\varphi\left(t^{\prime \prime}\right)+\beta \leqslant-\frac{\beta}{D} \rho\left(x, X_{0}^{\beta}\left(t^{\prime \prime}\right)\right) .
\end{aligned}
$$

By (8)

$$
\Phi\left(x, t^{\prime}\right) \leqslant \varphi\left(t^{\prime}\right)+\beta
$$

and, hence

$$
\begin{aligned}
& -\varphi\left(t^{\prime}\right)-\beta-L\left\|t^{\prime}-t^{\prime \prime}\right\|+\varphi\left(t^{\prime}\right)+\beta \leqslant-\frac{\beta}{D} \rho\left(x, X_{0}^{\beta}\left(t^{\prime \prime}\right)\right) \\
& \varphi\left(t^{\prime \prime}\right)-\varphi\left(t^{\prime}\right)-L\left\|t^{\prime}-t^{\prime \prime}\right\| \leqslant-\frac{\beta}{D} \rho\left(x, X_{0}^{\beta}\left(t^{\prime \prime}\right)\right)
\end{aligned}
$$

Now, we have by Lemma 6.1

$$
\begin{align*}
& -2 L\left\|t^{\prime}-t^{\prime \prime}\right\| \leqslant-\frac{\beta}{D} \rho\left(x, X_{0}^{\beta}\left(t^{\prime \prime}\right)\right) \\
& \rho\left(x, X_{0}^{\beta}\left(t^{\prime \prime}\right)\right) \leqslant \frac{2 L D}{\beta}\left\|t^{\prime}-t^{\prime \prime}\right\| \tag{9}
\end{align*}
$$

It is obvious, that if $x \in X_{0}^{\beta}\left(t^{\prime \prime}\right)$ then (9) is valid as well. Thus,

$$
\max _{x \in X_{\left(\varepsilon^{\prime}\right)}} \rho\left(x, X_{0}^{\beta}\left(t^{\prime \prime}\right)\right) \leqslant \frac{2 L D}{\beta}\left\|t^{\prime}-t^{\prime \prime}\right\|
$$

Similarly

$$
\max _{x \in X_{0}^{f}\left(t^{\prime \prime}\right)} \rho\left(x, X_{0}^{\beta}\left(t^{\prime}\right)\right) \leqslant \frac{2 L D}{\beta}\left\|t^{\prime}-t^{\prime \prime}\right\|
$$

This completes the proof.
THEOREM 2.4. [10] Let Assumption 2.3 be fulfilled and in (5)

$$
\begin{equation*}
\left\|\xi^{n}\right\| \leqslant K, \quad n=1, \ldots, N-1 \tag{10}
\end{equation*}
$$

Suppose that a, δ, γ satisfy (6) for some $\theta_{0}>0$ and the initial point $x^{1} \in X$ satisfies

$$
\begin{equation*}
\rho\left(x^{1}, X_{0}^{\beta_{0}}\left(t^{1}\right)\right)^{2} \leqslant \alpha_{0} . \tag{11}
\end{equation*}
$$

Then every trajectory $\left\{x\left(t^{n}\right)=x^{n}, n=1, \ldots, N\right\}$ of (5) satisfies

$$
\rho\left(x^{n}, X_{0}^{\beta_{0}}\left(t^{n}\right)\right)^{2} \leqslant \alpha_{0}, \quad n=1, \ldots, N .
$$

Proof. Fix an arbitrary trajectory $\left\{x^{n}\right\}$ of (5) and set

$$
\theta_{n}=\rho\left(x^{n}, X_{0}^{\beta}\left(t^{n}\right)\right)^{2}, \quad n=1, \ldots, N .
$$

By (11) we have

$$
\begin{equation*}
\theta_{1} \leqslant \alpha_{0} . \tag{12}
\end{equation*}
$$

Set

$$
\begin{aligned}
& x^{i}\left(t^{j}\right)=\operatorname{pr}_{X_{0}^{8_{0}(t)}}\left(x^{i}\right), \\
& \bar{x}^{i}\left(t^{j}\right)=\operatorname{pr}_{X_{0}^{Q_{0}\left(t^{\prime}\right)}}\left(x^{i}\left(t^{j}\right)\right), \quad i, j=1, \ldots, N .
\end{aligned}
$$

For any $n=1, \ldots, N-1$ we have

$$
\begin{align*}
\theta_{n+1} & =\left\|x^{n+1}-x^{n+1}\left(t^{n+1}\right)\right\|^{2} \leqslant\left\|x^{n+1}-\bar{x}^{n+1}\left(t^{n}\right)\right\|^{2} \\
& \leqslant\left(\left\|x^{n+1}-x^{n+1}\left(t^{n}\right)\right\|+\left\|x^{n+1}\left(t^{n}\right)-\bar{x}^{n+1}\left(t^{n}\right)\right\|\right)^{2} \\
& \leqslant\left(\left\|x^{n+1}-x^{n}\left(t^{n}\right)\right\|+h\left(X_{0}^{\beta_{0}}\left(t^{n}\right), X_{0}^{\beta_{0}}\left(t^{n+1}\right)\right)\right)^{2} . \tag{13}
\end{align*}
$$

By assumption 2.3 and (10) we get

$$
\begin{aligned}
\left\|x^{n+1}-x^{n}\left(t^{n}\right)\right\|^{2} & \leqslant\left\|\operatorname{pr}_{x}\left(x^{n}-a \xi^{n}\right)-x^{n}\left(t^{n}\right)\right\|^{2} \leqslant\left\|x^{n}-a \xi^{n}-x^{n}\left(t^{n}\right)\right\|^{2} \\
& \leqslant\left\|x^{n}-x^{n}\left(t^{n}\right)\right\|^{2}-2 a\left\langle\xi^{n}, x^{n}-x^{n}\left(t^{n}\right)\right\rangle+a^{2}\left\|\xi^{n}\right\|^{2} \\
& \leqslant \theta_{n}+2 a\left\langle\xi^{n}, x^{n}\left(t^{n}\right)-x^{n}\right\rangle+a^{2} K^{2} \\
& \leqslant \theta_{n}+2 a\left(\Phi\left(x^{n}\left(t^{n}\right), t^{n}\right)-\Phi\left(x^{n}, t^{n}\right)+\delta\right)+a^{2} K^{2} .
\end{aligned}
$$

Then, it follows from Lemma 6.2 that

$$
\Phi\left(x^{n}\left(t^{n}\right), t^{n}\right)-\Phi\left(x^{n}, t^{n}\right) \leqslant-\frac{\beta_{0}}{D}\left\|x^{n}\left(t^{n}\right)-x^{n}\right\|=-\frac{\beta_{0}}{D} \theta_{n}^{1 / 2} .
$$

Thus,

$$
\begin{equation*}
\left\|x^{n+1}-x^{n}\left(t^{n}\right)\right\|^{2} \leqslant \theta_{n}-\frac{2 a \beta_{0}}{D} \theta_{n}^{1 / 2}+2 a \delta+a^{2} K^{2} . \tag{1}
\end{equation*}
$$

By Corollary 6.3 , (14) and (13), we have

$$
\begin{aligned}
\theta_{n+1} & \leqslant \theta_{n}-\frac{2 a \beta_{0}}{D} \theta_{n}^{1 / 2}+2 a \delta+a^{2} K^{2}+2 D \frac{2 D L}{\beta_{0}} 2 \gamma+\frac{16 D^{2} L^{2} \gamma^{2}}{\beta_{0}^{2}} \\
& \leqslant \begin{cases}\theta_{0}+2 a \delta+a^{2} K^{2}+\frac{8 D^{2} L}{\beta_{0}} \gamma+\frac{16 D^{2} L^{2} \gamma^{2}}{\beta_{0}^{2}}, & \text { if } \theta_{n} \leqslant \theta_{0} \\
\theta_{n}-\frac{2 a \beta_{0}}{D} \theta_{0}^{1 / 2}+2 a \delta+a^{2} K^{2}+\frac{8 L D^{2}}{\beta_{0}} \gamma+\frac{16 D^{2} L^{2} \gamma^{2}}{\beta_{0}^{2}}, & \text { if } \theta_{n}>\theta_{0}\end{cases}
\end{aligned}
$$

Applying (6), yields

$$
\theta_{n+1} \leqslant \max \left(\alpha_{0}, \theta_{n}\right), \quad n=1, \ldots, N-1 .
$$

Now it follows from (12) that

$$
\theta_{n} \leqslant \alpha_{0}, \quad n=1, \ldots, N-1
$$

The theorem is established.

References

1. Branin, F. and Hoo, S. (1972), A Method for Finding Multiple Extrema of a Function of n Variables, in F. A. Lootsma (ed.), Numerical Methods to Nonlinear Optimization, Iondon, New-York: Academic Press, pp. 231-237.
2. Branin, F. H. (1972), Widely Convergent Methods for Finding Multiple Solutions of Simultaneous Nonlinear Equations, IBM J. Res. Dev. 16 (5), 504-522.
3. Gomulka, J. (1975), Remarks on Branin's Method for Solving Nonlinear Equations in L. C. W. Dixon and G. P. Szegö (eds.), Towards Global Optimization, Amsterdam, Oxford: NorthHolland, New York: Amer. Elsevier, pp. 29-54.
4. Diener, I. (1986), Trajectory Nets Connecting All Critical Points of a Smooth Function, Math. Progr. 36 (3), 340-352.
5. Yamashita, H. (1979), A Continuous Path Method of Optimization and Its Applications to Global Optimization, Survey of Mathematical Programming (Proc. 9th International Math. Prog. Symp. Budapest, 1976), Amsterdam, North-Holland, V. 1., pp. 539-546.
6. Treccani, G. (1975), On the Convergence of Branin's Method: A Counter Example, in L. C. W. Dixon and G. P. Szegö (eds.), Towards Global Optimization, Amsterdam, Oxford: NorthHolland, New York: Amer., Elsevier, pp. 107-116.
7. Eremin, I. I. and Mazurov, V. D. (1979), Nonstationary Mathematical Programming Processes, Nauka, Moscow (in Russian).
8. Gaivoronski, A. A. (1978), On Nonstationary Stochastic Programming Problems, Kibernetika 4, 89-92.
9. Dem'janov, V. F. and Vasil'jev, K. S. (1985), Nondifferentiable Optimization, Nauka (in Russian).
10. Zavriev, S. K. (1989), The Finite ε-Subgradient Algorithm for the Approximate Solving of Parametrical Programming Problems, in P. S. Krasnoschokov and L. N. Korolev (eds.), Computing Complexes and the Modelling of Complicated Systems, MGU, Moscow, pp. 111-117 (in Russian).
11. Treccani, G., Trabattoni, L. and Szegö, G. P. (1972), A Numerical Method for the Isolation of Minima, in G. P. Szegö (ed.), Minimization Algorithms Mathematic Theories and Computer Results, London, New-York: Academic Press, pp. 239-289.
